Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yong-Zhong Wu,^a* Hong-Yun Li^b and Wen-Tao Yu^a

^aState Key Laboratory of Crystalline Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China, and ^bState Key Laboratory of Crystalline Materials, First Accessorial Junior High School, Shandong University, Jinan 250100, Shandong Province, People's Republic of China

Correspondence e-mail: wuyz@icm.sdu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.044 wR factor = 0.119 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the crystal structure of the title phosphonium salt, $C_{22}H_{22}O_2P^+$ ·Br⁻·H₂O, the triphenylphosphosphonium group has three P–C bonds to phenyl rings which are equal within experimental error [mean 1.782 (3) Å] The P atom is also attached directly to the C atom of a 1,3-dioxan-2-ylmethyl group with a longer P–C bond of 1.800 (3) Å. The C–C bond of the dioxane ring [1.418 (5) Å] is shorter than the normal bond distance. The asymmetric unit contains two bromide

anions on twofold rotation axes to balance the charge of the

bromide monohydrate

(1,3-Dioxan-2-ylmethyl)triphenylphosphonium

Received 23 January 2006 Accepted 31 January 2006

Comment

cation.

As an inhibitor against the acid corrosion of iron, steel, zinc, and aluminium and its alloys with high efficiency, (1,3-dioxan-2-ylmethyl)triphenylphosphonium bromide has a broad range of applications and has been studied widely. The alkaline hydrolysis of the title phosphonium salt, (I), yielded triphenylphosphine oxide, cyclopentanecarboxylic acid and ethyl cyclopentanecarboxylate (Araya-Maturana & Castaneda, 1993). We report here the crystal structure of (1,3dioxan-2-ylmethyl)triphenylphosphonium bromide monohydrate, (I) (Fig. 1).

The cation of (I) exhibits the usual tetrahedral coordination at P. The P-C bond lengths between the phenyl rings and P compare well with those reported previously for other triphenylphosphonium salts (Ferguson et al., 1988; Boys et al., 1995). The P atom is attached directly to the 1,3-dioxan-2ylmethyl group, with a longer P–C bond of 1.800 (3) Å. The tetrahedral C-P-C angles range from 105.46(13) to 112.84 (13)°. Atom C20 in the dioxolane ring has a large deviation [0.187 (3) Å] from the least-squares plane through O1/C21/C22/O2. The C-O bonds in the dioxolane ring have lengths in the range 1.395 (4)–1.427 (4) Å. The C–C bond of the dioxloane ring has a length of 1.418 (5) Å, shorter than the normal bond length of 1.49 Å. Molecules are linked to each other by van der Waals forces, forming a three-dimensional network. Bromide anions lie on twofold rotation axes, while the cations and water molecules are in general positions.

All rights reserved

© 2006 International Union of Crystallography

Experimental

The title compound, (I), was prepared as described by Cresp *et al.* (1974). 2-Bromomethyl-1,3-dioxolane and triphenylphosphine were heated in a steam bath. The cooled product was separated by filtration, washed well with dry diethyl ether and dried under vacuum to afford the triphenylphosphonium salt. A sample crystallized from dichloromethane–dry diethyl ether (3:1 ν/ν) formed prisms.

 $D_x = 1.445 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 2671 reflections $\theta = 2.5-24.1^{\circ}$ $\mu = 2.10 \text{ mm}^{-1}$ T = 298 (2) KBlock, colourless

Crystal data

$C_{22}H_{22}O_2P^+ \cdot Br^- \cdot H_2O$	
$M_r = 447.29$	
Monoclinic, C2/c	
a = 17.322 (4) Å	
b = 14.451 (3) Å	
c = 17.978 (4) Å	
$\beta = 114.003 \ (3)^{\circ}$	
$V = 4111.0 (16) \text{ Å}^3$	
Z = 8	

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{min} = 0.443, T_{max} = 0.716$ 10117 measured reflections

Refinement

Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.044$ $w = 1/[\sigma^2(F_o^2) + (0.0678P)^2]$ $wR(F^2) = 0.119$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.04 $(\Delta/\sigma)_{max} = 0.001$ 3636 reflections $\Delta\rho_{max} = 0.46$ e Å⁻³245 parameters $\Delta\rho_{min} = -0.25$ e Å⁻³

Table 1

Selected geometric parameters (Å, °).

C1-P1	1.792 (3)	C20-O2	1.395 (4)
C7-P1	1.782 (3)	C20-O1	1.408 (4)
C13-P1	1.784 (3)	C21-C22	1.418 (5)
C19-C20	1.515 (4)	C21-O1	1.427 (4)
C19-P1	1.800 (3)	C22-O2	1.423 (4)
C20-C19-P1	116.6 (2)	C20-O2-C22	105.6 (3)
O2-C20-O1	105.7 (3)	C7-P1-C13	112.84 (13)
O2-C20-C19	110.0 (3)	C7-P1-C1	110.43 (14)
O1-C20-C19	112.4 (2)	C13-P1-C1	107.47 (13)
C22-C21-O1	106.6 (3)	C7-P1-C19	109.53 (14)
C21-C22-O2	106.7 (3)	C13-P1-C19	110.84 (14)
C20-O1-C21	105.0 (2)	C1-P1-C19	105.46 (14)

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve

🕑 Br1

03

€ Br2

Figure 1

The asymmetric unit of compound (I), with the labelling of the non-H atoms. Displacement ellipsoids are drawn at the 30% probability level.

structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (grant No. 50323006) and the Fund for the Excellent Young Scientists of Shandong Province.

References

- Araya-Maturana, R. & Castaneda, F. (1993). Phosphorus Sulfur Silicon, 81, 165–172.
- Boys, D., Araya-Maturana, R., Gonzalez, O. & Manriquez, V. (1995). Acta Cryst. C51, 105–107.
- Bruker (1997). SMART, SAINT and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Cresp, T. M., Sargent, M. V. & Vogel, P. (1974). J. Chem. Soc. Perkin Trans. 1, pp. 37–41.

- Ferguson, G., McCrindle, R., McAlees, A. J. & Rice, R. E. (1988). Acta Cryst. C44, 53–56.
- Sheldrick, G. M. (1997). SADABS and SHELXL97. University of Göttingen, Germany.

 $0.45 \times 0.18 \times 0.16 \text{ mm}$ area-detector 3636 independent reflections 2808 reflections with I > 2\$I) $R_{\text{int}} = 0.038$ $\theta_{\text{max}} = 25.0^{\circ}$ $h = -20 \rightarrow 18$

 $k=-13\rightarrow 17$

 $l = -17 \rightarrow 21$