Acta Crystallographica Section E

Structure Reports Online

(1,3-Dioxan-2-ylmethyl)triphenylphosphonium bromide monohydrate

Yong-Zhong Wu, ${ }^{\text {a }}$ * Hong-Yun Li ${ }^{\text {b }}$ and Wen-Tao Yu ${ }^{\text {a }}$
${ }^{\mathrm{a}}$ State Key Laboratory of Crystalline Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Crystalline Materials, First Accessorial Junior High School, Shandong University, Jinan 250100, Shandong Province, People's Republic of China

Correspondence e-mail: wuyz@icm.sdu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.044$
$w R$ factor $=0.119$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the crystal structure of the title phosphonium salt, $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}^{+} \cdot \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the triphenylphosphosphonium group has three $\mathrm{P}-\mathrm{C}$ bonds to phenyl rings which are equal within experimental error [mean 1.782 (3) \AA] The P atom is also attached directly to the C atom of a 1,3-dioxan-2-ylmethyl group with a longer $\mathrm{P}-\mathrm{C}$ bond of 1.800 (3) \AA. The $\mathrm{C}-\mathrm{C}$ bond of the dioxane ring $[1.418(5) \AA$] is shorter than the normal bond distance. The asymmetric unit contains two bromide anions on twofold rotation axes to balance the charge of the cation.

Comment

As an inhibitor against the acid corrosion of iron, steel, zinc, and aluminium and its alloys with high efficiency, (1,3-dioxan-2-ylmethyl)triphenylphosphonium bromide has a broad range of applications and has been studied widely. The alkaline hydrolysis of the title phosphonium salt, (I), yielded triphenylphosphine oxide, cyclopentanecarboxylic acid and ethyl cyclopentanecarboxylate (Araya-Maturana \& Castaneda, 1993). We report here the crystal structure of (1,3-dioxan-2-ylmethyl)triphenylphosphonium bromide monohydrate, (I) (Fig. 1).

(I)

The cation of (I) exhibits the usual tetrahedral coordination at P . The $\mathrm{P}-\mathrm{C}$ bond lengths between the phenyl rings and P compare well with those reported previously for other triphenylphosphonium salts (Ferguson et al., 1988; Boys et al., 1995). The P atom is attached directly to the 1,3-dioxan-2ylmethyl group, with a longer $\mathrm{P}-\mathrm{C}$ bond of 1.800 (3) \AA. The tetrahedral $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles range from 105.46 (13) to 112.84 (13) ${ }^{\circ}$. Atom C 20 in the dioxolane ring has a large deviation [0.187 (3) A] from the least-squares plane through $\mathrm{O} 1 / \mathrm{C} 21 / \mathrm{C} 22 / \mathrm{O} 2$. The $\mathrm{C}-\mathrm{O}$ bonds in the dioxolane ring have lengths in the range 1.395 (4)-1.427 (4) \AA. The $C-C$ bond of the dioxloane ring has a length of 1.418 (5) \AA, shorter than the normal bond length of $1.49 \AA$. Molecules are linked to each other by van der Waals forces, forming a three-dimensional network. Bromide anions lie on twofold rotation axes, while the cations and water molecules are in general positions.

Received 23 January 2006
Accepted 31 January 2006

Experimental

The title compound, (I), was prepared as described by Cresp et al. (1974). 2-Bromomethyl-1,3-dioxolane and triphenylphosphine were heated in a steam bath. The cooled product was separated by filtration, washed well with dry diethyl ether and dried under vacuum to afford the triphenylphosphonium salt. A sample crystallized from dichloromethane-dry diethyl ether ($3: 1 \mathrm{v} / \mathrm{v}$) formed prisms.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}^{+} \cdot \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$D_{x}=1.445 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=447.29$
Monoclinic, C2/c
$a=17.322$ (4) A
$b=14.451$ (3) A
$c=17.978$ (4) \AA
$\beta=114.003$ (3) ${ }^{\circ}$
$V=4111.0(16) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
Cell parameters from 2671
reflections
$\theta=2.5-24.1^{\circ}$
$\mu=2.10 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.45 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.443, T_{\text {max }}=0.716$
10117 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.119$
$S=1.04$
3636 reflections
245 parameters

3636 independent reflections
2808 reflections with $I>2 \breve{\mathrm{~s}} I$)
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-20 \rightarrow 18$
$k=-13 \rightarrow 17$
$l=-17 \rightarrow 21$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0678 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=0.46 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.25 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C1-P1	$1.792(3)$	$\mathrm{C} 20-\mathrm{O} 2$	$1.395(4)$
C7-P1	$1.782(3)$	$\mathrm{C} 20-\mathrm{O} 1$	$1.408(4)$
$\mathrm{C} 13-\mathrm{P} 1$	$1.784(3)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.418(5)$
C19-C20	$1.515(4)$	$\mathrm{C} 21-\mathrm{O} 1$	$1.427(4)$
$\mathrm{C} 19-\mathrm{P} 1$	$1.800(3)$	$\mathrm{C} 22-\mathrm{O} 2$	$1.423(4)$
C20-C19-P1	$116.6(2)$	$\mathrm{C} 20-\mathrm{O} 2-\mathrm{C} 22$	$105.6(3)$
$\mathrm{O} 2-\mathrm{C} 20-\mathrm{O} 1$	$105.7(3)$	$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 13$	$112.84(13)$
$\mathrm{O} 2-\mathrm{C} 20-\mathrm{C} 19$	$110.0(3)$	$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 1$	$110.43(14)$
$\mathrm{O} 1-\mathrm{C} 20-\mathrm{C} 19$	$112.4(2)$	$\mathrm{C} 13-\mathrm{P} 1-\mathrm{C} 1$	$107.47(13)$
C22-C21-O1	$106.6(3)$	$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 19$	$109.53(14)$
C21-C22-O2	$106.7(3)$	$\mathrm{C} 13-\mathrm{P} 1-\mathrm{C} 19$	$110.84(14)$
C20-O1-C21	$105.0(2)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 19$	$105.46(14)$

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve

Figure 1

The asymmetric unit of compound (I), with the labelling of the non-H atoms. Displacement ellipsoids are drawn at the 30% probability level.
structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant No. 50323006) and the Fund for the Excellent Young Scientists of Shandong Province.

References

Araya-Maturana, R. \& Castaneda, F. (1993). Phosphorus Sulfur Silicon, 81, 165-172.
Boys, D., Araya-Maturana, R., Gonzalez, O. \& Manriquez, V. (1995). Acta Cryst. C51, 105-107.
Bruker (1997). SMART, SAINT and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Cresp, T. M., Sargent, M. V. \& Vogel, P. (1974). J. Chem. Soc. Perkin Trans. 1, pp. 37-41.
Ferguson, G., McCrindle, R., McAlees, A. J. \& Rice, R. E. (1988). Acta Cryst. C44, 53-56.
Sheldrick, G. M. (1997). SADABS and SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

